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Abstract. The modeling of collisions among particles in 
space plasma media poses a challenge for computer simu- 
lation. Traditional plasma methods are able to model well 
the extremes of highly collisional plasmas (MHD and Hall- 
MHD simulations) and collisionless plasmas (parlicle-in-cell 
simulations). However, neither is capable of trealing the in- 
termediate, semi-collisional regime. The authors have in- 
vented a new approach to particle simulation called Quiet 
Monte Carlo Direct Simulation (QMCDS) that can, in princi- 
ple, treat plasmas with arbitrary and arbitrarily varying colli- 
sionality. The QMCDS method will be described, and appli- 
cations of the QMCDS method as “proof of principle” to dif- 
fusion, hydrodynamics, and radiation transport will be pre- 
sented. Of particular interest to the space plasma simulation 
community is the application of QMCDS to kinetic plasma 
modeling. A method for QMCDS simulation of kinetic plas- 
mas will be outlined, and preliminary results of simulations 
in the limit of weak pitch-angle scattering will be presented. 

1 Introduction 

Many space plasma media are semi-collisional, meaning that 
the collision times are comparable to the dynarnical time scales 
of interest in the systems. In such plasmas the collision- 
ality often varies considerably as a function of time or po- 
sition. These systems include, for example, Earth’s iono- 
sphere, the solar chromosphere and corona, Earth’s auroral 
region, portions of Jupiter’s inner magnetosphere, and comet 
atmospheres. 

Existing plasma simulations generally fall into one of two 
categories, neither of which can treat semi-collisional plas- 
mas satisfactorily: On the one hand one has simulation meth- 
ods that treat the plasma as a fluid. (These include magneto- 
hydrodynamics (MHD) and Hall-MHD simulations). Fluid- 
like simulations make the tacit assumption that the plasma is 
everywhere in local thermodynamic equilibrium. This amounts, 
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in effect, to assuming very rapid collisions that wash out any 
interesting velocity-space features in the particles’ distribu- 
tion functions. As a consequence, all interesting kinetic fea- 
tures of the plasma beyond the lowest-order moments of the 
particle distribution functions are lost. 

On the other hand one has fully kinetic simulations, in- 
cluding particle-in-cell (PIC) simulations and Vlasov simu- 
lations. PIC plasma simulations retain the kinetic features of 
the plasma, since the macro-particles sample the plasma dis- 
tribution function in phase space, however they suffer from 
limited dynamical range and statistical noise due to having 
only a finite number of particles, and they generally ignore 
collisions. Vlasov simulations of the plasma provide low- 
noise modeling of the dynamics, yet they are computation- 
ally intensive (they must resolve a 2N-dimensional phase 
space, where N is the number of spatial dimensions), and 
they generally do not include collisions. 

Some PIC plasma simulations have been developed that 
can, in a limited way, model collisions. For example, early 
work by Shanny et al. (1967) demonstrated how one might 
add pitch-angle scattering to PIC simulations. Their algo- 
rithm did not treat the collisions self-consistently, however, 
which makes it applicable to a restricted subset of problems, 
such as electrons scattering off fixed ions. An alternative PIC 
collision model, called the “collision field” model has been 
developed by some of us (Jones et al., 1996a,b, 1998). This 
model can treat collisions in a more self-consistent manner, 
however, like the collision model of Shanny et al, it requires 
prohibitively large numbers of particles to get high-fidelity 
results. 

Ultimately we would like a computationally efficient and 
self-consistent way of including collisions in kinetic plasma 
simulations. Recent work by the authors has led to a method 
which we call “quiet Monte Carlo direct simulation” that has 
the potential to capture the physics of this challenging param- 
eter regime. The presentation is structured as follows: First, 
we describe the theory underlying general particle methods 
and we discuss the advantages and shortcomings of Monte 
Carlo direct simulation. Then we describe an improvement 
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which we call quiet Monte Carlo direct simulation (QMCDS) 
that has greatly reduced noise and and we show results of the 
application of this method to different systems, including dif- 
fusion and hydrodynamics. Finally, we discuss how the QM- 
CDS method can be applied to kinetic simulation or plasmas. 
Preliminary results from this application of the method will 
be shown. 

2 Theory Underlying Generalized Particle Methods 

Suppose we are interested in finding a numerical solution 
of a partial differential equation (PDE) such as the Fokker 
Planck equation. This is generally a complicated problem 
and it can be time consuming on modern computing equip- 
ment. However, we note that the integration of ordinary clif- 
ferential equations (ODEs) is both straightforward (e.g. with 
Runge Kutta (Press et al., 1992)) and efficient. The trick of 
particle methods is to exploit the relative ease of integrating 
ODEs by finding a way to represent a solution to the partial 
differential equation in terms of solutions of an equivalent 
set of ordinary differential equations. This is the essence of 
Monte Carlo methods, and it yields a powerful simplification 
to many problems. 

One of the difficulties of Monte Carlo methods, however, 
is that, in general, a large number of particles are needed 
to sample the distribution function well. Consider the one- 
dimensional diffusion equation 

An equivalent formulation of the differential equation is in 
terms of a collection of random-walking particles, whose po- 
sitions are given by the stochastic differential equation 

(2) a(t + d t )  = x ( t )  -t d m N ( 0 ,  l), 

where N(0,l)  represents a random, normally distributedvalue 
with zero mean and unit varjance. (See Gardiner (1994) for 
a discussion of how one obtains equivalent stochastic differ- 
ential equations for a generalized Fokker Planck equation). 
The method of using particles to solve the diffusion equa- 
tion, therefore, is straightforward: At time t one creates n 
particles at each point xi on a spatial mesh where f ( z i ,  t )  is 
known, and each particle is made to carry a mass f(ai, t ) / n .  
Then, for each particle a realization is made of the random 
variable N(0,l)  using a random number generator, and this 
value is used in ( 2 )  to find the new position of the particle 
after a time d t  = At has elapsed. Finally, the particles are 
weighted back onto the mesh to find the updated mass func- 
tion f(a, t + At).  

Though conceptually simple, this “Monte Carlo direct sim- 
ulation” technique is very powerful. It requires no matrix in- 
versions, which can be costly in higher dimensions, and all 
the operations require only local data, so the method would 
scale well on parallel computing architectures where com- 
munications latency is high. However, it has a disadvanlage 
in that the updating formula (2) is statistical in nature-in 
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Fig. 1. Monte Carlo direct simulation of the diffusion of a slab. 
(The initial mass profile is shown in the dashed curve in panel (e) 
along with the analytic solution). Panels (a>-(c) are from a tradi- 
tional Monte Carlo direct simulation; note how statistical noise in 
the solution is evident even with 1600 particles/cell. Panel (d) is a 
quiet Monte Carlo direct simulation of the same. The QMCDS sim- 
ulation has essentially no statistical noise with 5 particles per cell. 
(100 simulation cells were used in this simulation). 

order to get a good sampling of the random process one typ- 
ically needs to go to large values of n, and even then the 
error associated with random sampling of N ( 0 , l )  decreases 
slowly, scaling like l/+. (See Fig. 1, panels (a)-(c)). Sta- 
tistical errors associated with finite-particle effects lead to 
both noise and limited dynamical range in the simulation. 

3 Quiet Monte Carlo Direct Simulation 

We have found a remedy for the statistical difficulties associ- 
ated with the random sampling of N ( 0 ,  1). Instead of giving 
every particle at a given point the same mass and drawing 
values at random from the distribution N ( 0 ,  l), we choose 
the set of masses mj and corresponding Nj values ( j  = 
1 , . . n) so that the same particle dynamics occur, but with the 
statistical error associated with having a finite number of par- 
ticles minimized. In the case where the distribution N(0,l)  
is normal, the natural choice is Gauss-Hermite weights and 
abscissas (Abramovitz and Stegun, 1972) for the mi and Ni. 
With the simple replacement of mj 0: wj and Nj cx a j ,  
where wj and aj are the n-point Gauss-Hermite weights and 
abscissas, we find that very quiescent results may be obtained 
with only a few particles per cell.’ (Compare Fig. 1 pan- 

‘ A  note of caution here: one must be careful of the weighting 
used to gather the particles onto the grid following the position up- 
date. E.g., the traditional linear weighting usedin many PIC simula- 
tions is inherently diffusive, with a numerical diffusion coefficient 
that scales as l/a, so the diffusion algorithm outlined above 
would not converge as At + 0. To avoid this, a weighting method 
must be used that preserves the low-order moments of the mass dis- 
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els (a)-(c) with panel (d)). Due to the quiet nature of the 
Gauss-Hermjte sampling, we refer to this method as “quiet 
Monte Carlo direct simulation” (QMCDS). Note that in the 
QMCDS simulation method the particles are recreated anew 
every time step. Similar to the concept of “ephemeral parti- 
cles” (Arter and Eastwood, 1995), this feature allows varia- 
tions in the field quantities to be tracked over arbitrarily large 
dynamical ranges. 

In summary, the QMCDS simulation does the following at 
every time step: 

1. n new particles are generatcd in each cell via a “quiet 
start” from the moments accumulated onto the grid. 

2. The particles are advanced. 

3. Moments of quantities carried by the particles are ac- 
cumulated back onto the grid, and the particles arc de- 
s troyed. 

In the case of simple diffusion, the “quiet start” of step 1 en- 
tails using the Gauss-Hermite weights and abscissas to con- 
struct the distribution of particles. 

QMCDS is easily extensible to other systems, such as ra- 
diation transport (Lemons et d., 2001) and Eulerian hydro- 
dynamics (Jones et al., 2000). For example, Pullin (1980) 
has performed Monte Carlo simulations of hydrodynamics 
by using the update formulae 

.(t + d t )  = .(t) + v d t  (3) 
v ( t  + d t )  = v(t)  4- &j2iN(O1 l), (4) 

tribution in each cell through the variance. Due to spacelimitations, 
we refer the interested to Jones et al. (2000) and Albright et al. 
(2001) where we have derived such a weighting. 

Fig. 2. Quiet Monte Carlo simulation 
results (solid curves) for a shock tube 
hydrodynamics test problem. The ini- 
tial conditions (shown in the dot-dashed 
curve) have a density difference of lo3 
to 1 and an initial temperature differ- 
ence of 10‘ to 1. The dashed curves are 
the exact solutions for the shock evolu- 
tion, The simulation was run for a total 
of 246 time steps. 

where at (z ( t ) ,  t )  is the local value of the velocity variance, 
and he found that while his results were in general agree- 
ment with analytic predictions of the fluid behavior, the ad- 
verse level of statistical noise limited the applicability of his 
method. When we apply the QMCDS prescription for han- 
dling the random variable N(0,l)  to the Pullin’s updating 
I-ormulae, we find a quiescent, computationally efficient for- 
mulation of hydrodynamics. For illustration, in Fig. 2 we 
show QMCDS results of a particularly challenging hydrody- 
namics test problem, a one-dimensional shock tube with an 
initial jump in density of lo3 to 1 across the interface, and a 
jump in temperature of lo6 to 1. The QMCDS simulation is 
found to have both low-noise and large dynamical range. The 
simulation shown used 720 simulation cells and ten particles 
per cell (7200 total particles). The shock interface is tracked 
well, and with very little statistical noise. 

4 Kinetic Simulation of Plasmas with QMCDS 

The quiet Monte Carlo method works when one can replace 
the PDEs describing a system with equivalent Langevin equa- 
tions. In the case of kinetic plasmas this means substitut- 
ing the Vlasov equation with a Boltzmann collision opera- 
tor (Lifshitz, 1981) 

with an equivalent set of (Its) stochastic differential equa- 
tions. Here fi ( 8 ,  t )  is the distribution function for species i, 
and the right hand side of ( 5 )  is the scattering operator. In the 
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limit of weak scattering the stochastic differential equations 
have the form 
;c(t + At) = ~ ( t )  + v ( t )  At 
v( t  + At)  = 

1 1 8  
m C 2 dv v ( t )  + ( E  + -v x B -. - - D) At 

+ m * N(0,l). (7) 
These equations, together with Maxwell’s equations, give us  
a closed set of dynamical equations describing the evolution 
of the field quantities and the particles. The particles act as 
sources for the electric and magnetic fields, and the fields in 
turn allow the forces on the particles to be computed. 

An attractive feature of the QMCDS simulation is that we 
can get high-accuracy, low-noise solutions to the underly- 
ing kinetic equations with only a modicum of particles. An 
intriguing possibility that we are currently examining is the 
application of the QMCDS method to  the Vlasov-Maxwell 
equations, a simulation that would essentially be the quiet 
Monte Carlo analog of classical PIC simulations of plasmas. 
If successful, this would give us a simulation with the power 
and flexibility of traditional PIC simulations, but with fewer 
particles, greatly reduced noise, and arbitrary dynamical range. 
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